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SUMMARY

An analysis is made of the oscillatory motion of vehicles which

traverse arbitrarily prescribed trajectories through the atmosphere.

Expressions for the oscillatory motion are derived as continuous functions

of the properties of the trajectory.

Results are applied to a study of the oscillatory behavior of re-entry

vehicles which have decelerations that remain within limits of human toler-

ance. It is found that a deficiency of aerodynamic damping for such

vehicles may have more serious consequences than it does for comparable

ballistic missiles.

INTRODUCTION

Studies of the oscillatory behavior of missiles entering the atmos-

phere on ballistic trajectories (refs. i and 2) have revealed that the

rapid increase in atmospheric density experienced by such vehicles is a

potent factor in restraining the magnitude of their oscillations. In

reference 2, for example, it is shown that even a vehicle that is dynami-

cally unstable in the usual aerodynamic sense will undergo oscillations

that are convergent over either all or the major portion of its path

through the atmosphere. Generally, the conclusion has been that for

ballistic missiles_ dynamic instability is a potential source of difficulty

only in their terminal phase of flight.

For the case of descending manned vehicles_ the situation is not yet

as clear. Since manned vehicles cannot be permitted to develop the very

large decelerations experienced by ballistic missiles, means of reducing

the decelerations must be introduced. A study of this problem by Chapman

(ref. 3) has revealed that decelerations can be held within tolerable

limits by the use of small amounts of lift and by the use of re-entry

trajectories starting from very small initial flight-path angles. The

question arises: What effect do these efforts to reduce deceleration

have on the oscillatory motion?
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A study of this question was undertaken by the authors, using as a
starting point the results of an analysis of oscillatory motions over
arbitrary trajectories presented by Tobak and Allen in reference 4. In
the course of this study, it was discovered that a numberof limitations
and assumptions of the previous analysis could be eliminated, thus both
widening its scope and simplifying its use. The purpose of the present
paper is therefore twofold: first to re-examine the motion analysis of
reference 4 to show how it can be extended, and second to apply the
results to a study of the oscillatory behavior of a class of vehicles
which have decelerations within the limits of humantolerance.

SYMBOLS

A reference area

drag
CD drag coefficient, qA

lift
CL lift coefficient, qA

pitching moment

Cm pitching-moment coefficient, qAZ

CLc_

Cm_

Cm&

C_q

Cm 5

rate of change of lift coefficient with angle of attack,

o

rate of change of pitching-moment coefficient with angle of

attack, <-_)C_ -_ 0

rate of change of moment coefficient with time rate of change

of angle-of-attack parameter _Z _ _Cm "_v ' o

rate of change of moment coefficient with pitching velocity

parameter GZ ( _Cm ._

rate of change of moment coefficient with control deflection,

o

D drag
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X,Z

parameters defined by equation (6)

acceleration due to gravity

pitching moment of inertia about center of gravity

Bessel function of first kind of zero order

dynamic stability parameter (eq. (9))

lift

body length and reference length for moment coefficient

evaluation

parameter defined by equation (12)

vehicle mass

parameters defined by equation (9)

i
dynamic pressure, _ oV2

distance from center of earth to vehicle

distance measured along path of "static" trajectory (see text)

time

horizontal component of flight velocity (sketch (a))

ratio of horizontal component of flight velocity to satellite
u

velocity,

flight velocity (sketch (a))

V

ratio of flight velocity to satellite velocity,

vertical component of flight velocity (sketch (a))

vehicle weight

altitude

Bessel function of second kind of zero order

axes fixed in space with origin at center of earth (sketch (a))
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angle of attack (sketch (a))

density parameter (eq. (32))

flight-#ath angle (sketch (a))

control deflection angle

angle of pitch measured from axis fixed in space (sketch (a))

angle of pitch measured from local horizontal (sketch (a))

air density

air density at sea level

radius of gyration

angular displacement of vehicle from fixed space axis, e - e

(sketch (a))

_--()
dt

d
dW()

initial value

envelope curve of oscillatory motion

oscillatory variable

nonoscillatory variable

ANALYS IS

Our purpose in the ensuing analysis is to show how a further improve-

ment can be made in the expression developed in reference 4 for oscilla-

tory motions over arbitrary trajectories. Specifically, we shall elimi-

nate both the assumption of constant aerodynamic coefficients and the

necessity of breaking the trajectory into straight-line segments.

Equations of Motion

The equations of motion defining the vehicle's path and its

oscillations about that path may be written as



where

-mV- CDqA+ mg sin y = 0

mV_+ CLqA+ m - os 7 = 0

i_ - qA_ZCm= 0

8 =8 -_

CL = CL_

&z @z
_Cm = Cm_ + Cm_ T + Cmq T + Cm_6

(i)

The angles _ 7, 8, _, _ are defined in sketch (a). Note in both

sketch (a) and equations (i) that we have taken this opportunity to cor-

rect an error that appears in the derivations of references I and 4;

namely, the erroneous use therein of a moving rather than a fixed axis
to define angular velocity (@) and angular acceleration (_). This error

does not affect the equations for oscillatory motion given in references i

and 4, however, as will be seen.

Z

{

×

Sketch (a)
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Fo_owing the argument of reference 4, we now separate equations (i)

into two sets of equations, one set (Ts, as, 8s) defining the "static

trajectory" of the center of gravity of the vehicle, the other (7o, _, 8o)

defining the oscillatory motions of the vehicle about the static trajectory.

_us, _der the restriction 17o/7si << l, we get for the static trajectory

equations

-_ - CDqA + _ sin %s = 0

mVis + _CL_s + m - os 7s : 0 (2)

@s )I_s - @l _s + C_-_-+ Cmq-V- + Cm55 = 0

and for the oscillatory motion

mV o+ qAC  o = 0

c &°tXeo - qAt m_% + Cn_ V
}

We note, however, that _ = u/r, which is a nonoscillatory quantity.

Hence, we may write

(3)

(4)

so that equations (3) for the oscillatory motion agree with equations (5)

of reference 4. Again, use of the equality eo = So - 7o permits the
set of equations (3) to be combined into a single equation for the

oscillatory angle of attack:

_o(t) + fl(t)ao(t) + f2(t)_o(t) -- 0

with

pVA (C m_) pVAI2fl(t) : CL_ --_ - mq + C 2I

PV2AZ d (C DVAh CmqCL_('DV_Z_ 2f2(t) : -Cm_ 21 + _ L_ _mm/ Im

(6)

Equations (2) through (6) retain with reference 4 the implicit assumption

that the drag coefficient CD is independent of angle of attack and

pitching velocity. However, it need not be assumed that the aerodynamic

coefficients in equations (2) through (6) are independent of Mach number.
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Oscillatory Motion

As in reference 4, henceforth the subscripts s and o will be

omitted. It is to be understood that in referring to _ we mean the

oscillatory angle of attack, whereas in referring to y we mean the

flight-path angle of the static trajectory. Now consider equation (5)

for the oscillatory angle of attack and let the independent variable be

distance traveled along the flight path, s. The use of s rather than

y as independent variable has a twofold advantage: First, s is a

single-valued function for any flight path and, second, the appearance of

sin y is suppressed. With the substitutions

&(t) = _, (s)v

_(t) = _"(s)v 2 + _,(s)_Fc,(s)
(7)

in equation (5), we get for the oscillatory equation of motion

P_(s)] + P_(s)_(s) = o (8)

with

P_(s) = 7 K

I 2

K = _ +

pAl

P_(s) = - 2m C_

(9)

and where we have retained only the dominant term in

of ref. 4). The transformation

then gives

with

_(S) = _(s)e- _Z FV'(s)LV-'_- _ - Pl(S)]ds

m"(s)+ M(s)_(s)= 0

1 d FV' s) 1
2ds [ ....

P2(s) (cf. appendix

(lo)

(]1)

M(s)= P_(s) (12)
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Again as in reference 4, it is easy to show that M(s) is essentially

P_(s).

As_ptotic solution for _(s).- In reference 4, it was found that

with the assumption of constant flight-path angle and constant Cm_ a
solution to equation (ii) could be written in terms of zero-order Bessel

functions of the first and second kind. Experience with this solution

has shown, however, that it approaches its asymptotic form very rapidly.

This suggests that the asymptotic solution to equation (ii) likewise

should be of sufficient accuracy for most practical purposes. The advan-

tage to seeking an asymptotic solution to equation (ll) is of course that

the above-mentioned assumptions need not be invoked. It is by this means,

therefore, that the necessity of breaking the trajectory into a series of

straight-line segments is eliminated.

To find the asymptotic solution to equation (ii) we use a theorem

given in its most general form by Wintner in reference _. Wintner has

shown that for large s any differential equation of the form (ii) whose

coefficient M(s) satisfies the conditions

M(s)> 0 for all s (13)

oo

[M(_)] - F_ as < oo (14)

will have a general solution which approaches asymptotically (as s _)
the form

_(s) : [M(s)]-_/_[c_cos m(s) + c_sinm(s)] (15)

where

_(s) =f4-_s) ds (16)

Further, differentiation of the asymptotic representation (15) is allowed.

Since, as has been mentioned, M(s) is essentially equal to P2(s), the
condition M(s) > 0 will be satisfied so long as the vehicle is statically

stable (C_< O) and its flight path remains within the measurable atmos-

phere (p > 0). With M(s) > 0 and twice differentiable, the condition (14)

is readily satisfied for any flight path that terminates in a finite
distance.

Hence, letting M(s) equal P2(s) and combining equation (15) with

(i0), we have as an asymptotic solution for the oscillatory motion

F
P1 ( )dsS

_(s) : i #i/4 e [clcos re(s) + cesin q_(S)] (i7)

[v_(s)P_(s)]
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or

with

i/h(s)ds
_(s) : c° e cosb(s) - %] (18)

[-c_(s)q(s)] 1'4

_(s)=],r_(s) ds

Because of the mildness of the conditions affecting its generality,

equation (18) is considered to be the central result of this analysis.

However, it cannot be expected to apply accurately over the initial part

of the motion. On the other hand; the Bessel function solution of refer-

ence 4 does apply to the initial motion, since over a sufficiently small

interval sin 7 and Cmm will not change significantly. A simple
artifice that combines these observations to give one expression that is

applicable over the initial part of the motion and still has the correct

asymptotic behavior is the following: Replace the asymptotic solution (15)

by the Bessel function combination that has (15) as its asymptotic

representation. Thus

_(s) [_=(s)]_'47oJ ): L M(s)] < 3 ob(S)]+ Cjo[Cn(=)] (19)

and

o.(s): Lv=]T[_s)je (c=Jor_(s)]+ C4Yob(s) (20)

where M(s) _ P2(s) and in 9(s) continuous variations in Cm_ and 7 are

to be permitted. It can be verified that with Cmm and sin 7 constant,

@2(s) = cM(s), so that equation (20) then reduces to the form given in
reference 4.

Further simplifications.- Equation (18) holds for any flight path

that remains within the measurable atmosphere, and for arbitrary varia-

tions of tile aerodynamic coefficients. When some of the coefficients can

be considered constants, further simplifications are possible. As an

example, let us assume that all coefficients are constants. The exponent

in equation (18) then has the form

K p(s)ds
e (a)
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The integral can be evaluated by adopting the approximations introduced

by Chapman in reference 3. Thus, consider the equation for balance of

forces in the horizontal direction (cf. ref. 3):

m + m + D cos y - _ tan 7 = 0 (22)

Following Chapman, we neglect the terms uv/r and (L/D)tan _ in equa-
tion (22) under the conditions that

luv/r I Idr/rl
idu/dtI - I u--q I <<1

L
I_ tan y I<< 1

} (23)

The first of these conditions has been shown in reference 3 to be satisfied

by any trajectory that has entered the atmosphere_ since as soon as the

drag becomes important in decelerating the motion the percentage change

in u becomes large compared with the percentage change in distance from

the planet center. The second condition is of course satisfied without

ap{roximation by nonlifting vehicles at any flight-path angle other than
90 . It should also be easily satisfied by lifting vehicles entering the

atmosphere from satellite orbits for then tan 7 is generally very small.
Equation (22) becomes

du f _CD_) u 2d-Y + P cos 7 - o (24)

and the transformation du/dt = (u/cos y)(du/ds) pez_mits p(s) to be
written as

/_k
p(s) = -2(_'_"_) l du

u ds (27)

Inserting equation (27) in (21) and integrating then gives for _(s)

_(s) : Czu-K/2
[q(s)]l/4 cos[q_(s) - 90]

The envelope of the oscillation has the simple form

(26)

-K/2
Clu

C_max(s) - (27)
[q(s)] ]/4
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Convergence Criteria

General criterion.- Let us now return to the asymptotic solution for

oscillatory motion (eq. (18)) and attempt to derive from it a criterion
whose satisfaction ensures that the motion is convergent at any position

s of the flight path. We use equation (18) rather than (26) since it

turns out that a remarkably simple result can be obtained from equation (18)

free of approximations either to the aerodynamic coefficients or to the

flight path. Thus, noting that the envelope of the oscillation varies as

Co ½/P_(s)ds
_ax(S) : e

[-c_(s)q(s)] 1/_

(_max)< o.we have convergence at any position s provided d--_
ensured if

(28)

This is

Pz (s) 1 q'(s) 1 Cm_ '(s)

2 4 q(s) 4 Cmc_(s)

< 0 (29)

It will be noted that equation (29) has essentially the same form (for

Cm = const.) as the convergence criterion derived in reference 4. Equa-
tion (29) is the more convenient expression, however, in that it applies

without change to any trajectory. With the use of y rather than s as

independent variable the inequality of reference 4 must be reversed when-

ever Y changes sign.

The usefulness of the criterion (29) is enhanced if an expression in

terms of primary quantities can be found for q'(s)/q(s). Such an expres-

sion is obtainable from the first of the static trajectory equations

(eq. (2)) in the following way. Converting the variable in equation (2)

to altitude y by the transformation

dV dV dy -(sin 7) V
dt - dy dt =

dV sin 7 d

dy- 2 dy
(V2 ) (30)

we have

i d (v_) :/CDA% q
2 dy <--_--J sin 7 g (31)

Now introduce the well-known assumption that atmospheric density varies

exponentially with altitude:

p = po e-6y (32)
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Use of equation (32) in the identity

then gives

and

dy Mr/
(33)

dq _C_) qpdy - sin 7 Pg - _q (34)

i dq i dq

q ds - sin 7 _

: -sin 7 sin Y V 2 _ (35)

Inserting equation (35) and also the definition of P1(s) (eq. (9)) in

equation (29), we get finally as a general criterion to be fulfilled by

the dynamic stability parameter K

K < - 1 + (sin F) + _ + gP sin 7 Cmc_(S
(36)

where

i l -ci _K=_ D + +C
/

Approximate criterion.- The derivation leading to equation (36) has

not required the introduction of approximations either to the trajectory

equations or to the aerodynamic coefficients. When equation (27) is used

to represent the oscillation amplitude rather than equation (28), however,

it is advisable to use a convergence criterion that is consistent with the

approximations introduced in the derivation of equation (27). With the

approximations indicated by equations (23) in force and with constant

aerodynamic coefficients the convergence criterion obtained from differ-

enhiation of equation (27) takes the form

K u'(s) i q'(s)
2 u(s) 4 q(s)< 0 (37)

Under the conditions defined by equations (23), the derivatives indicated

in equation (37) can be evaluated from the static trajectory equations
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used by Chapman in reference 3. (The term u'(s)/u(s) is already avail-

able as equation (25).) The convergence criterion becomes

L sin 27 <C_A_ [_ i (i- u-e)] (38)

Oddly enough, it turns out that the more precise expression, equation (36),

is also simpler in form. However, so long as the conditions imposed by

equations (23) are satisfied, the differences between results computed

from equations (38) and (36) should be insignificant. I

To summarize, it is advised that equations (28), (29), and (36) be

used when the properties of the trajectory are known precisely. The

results (27), (37), and (38) are those appropriate for use with constant

aerodynamic coefficients and in conjunction with trajectories computed

from Chapman's approximate analysis (ref. 3).

DISCUSSION

Let us now apply the results just developed to a study of the oscil ~

latorybehavior of vehicles whose decelerations during their descent

through the atmosphere appear to be within the bounds of human tolerance.

We have chosen as examples a series of nonlifting and lifting vehicles

with values of entrance angle ranging from 0° to 4° and drag-loading

parameter, W_CDA , of i0, 30, and i00 pounds per square foot. For these

examples the static flight trajectories were computed by the method of

reference 3 with the following conditions common to all cases:

(a) Constant aerodynamic coefficients

-- V i

(b)Vi -4Z7 - l

(e) Yi : 4oo,000 ft

-_y
(d) p : po e

with

iNote that the spurious L/D term in equation (38) may be discarded

in comparison with the first term, since by virtue of the second of equa-

tions (23) we have

I L sin 2?,
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Po = 0.0027 slugs/ft 3

l -i

: 23,500 ft

The choice Vi = i implies that the trajectories are those corresponding

to entry from circular satellite orbit, with the altitude at entry being

in the neighborhood of 80 miles (condition c).

Nonlifting Vehicles

Figure i shows the deceleration history in g's for nonlifting

vehicles having initial flight-path angles of 0°, 2°, and 4°. For all

but a portion of the 4° case, the decelerations are seen to be below the

level of 11.5 g considered to be an upper bound of human tolerance in

reference 3. Hence, for the chosen set of initial conditions, the entry
angle range 0° to 4° appears to cover the spectrum of usable trajectories

for manned nonlifting vehicles. The case 7i = 22° is included in fig-

ure i to illustrate the magnitude of decelerations typical of trajectories

having steeper entry angles, such as are experienced by long-range bal-

listic missiles. This case will again be used in subsequent figures as

illustrative of ballistic missile trajectories, in order to compare the

oscillatory behavior of manned vehicles with that typical of ballistic
missiles.

Effect of K.- The effect of the dynamic stability parameter, K, on

the oscillatory motion can be demonstrated by use of the convergence

criterion, equation (38). Since the sign of the expression determines

whether a vehicle's oscillations are convergent or divergent, setting the

expression equal to zero gives the set of circumstances signifying a

changeove r from convergent to divergent oscillations or vice-versa. Then,

at each point on the known trajectory, one can solve for the value of K

that makes the expression zero. The locus of such values of K plotted

against altitude therefore forms a boundary which separates the range of

altitudes over which oscillatory divergence is possible from the range

over which it is not. Such boundary curves are shown in figure 2 for the

three cases (7i = 0°, 2o, 4o) considered suitable for manned vehicles and

also for the ballistic missile case, 7i = 22o. The drag-loading parameter

W/CDA is 30 pounds per square foot. 2

The significance of the figure is as follows: Vehicles whose values

of K and altitude fall within the boundaries of their respective curves

2The assumption of constant aerodynamic coefficients is undoubtedly

invalid at subsonic and transonic speeds. For this reason the curves are

terminated below an altitude corresponding to sonic flight speed

(V = 0.04). It would be possible to continue the curves if the varia-

tions with Mach number of the aerodynamic coefficients were given; one

would use equation (36) rather than (38) in this case.



will experience divergent oscillations over the altitude range within the
boundaries. Thus, for example, the curve for the ballistic missile
(7i = 22o) indicates that a missile whose value of K is -0.4 will
experience divergent oscillations during its descent through the altitude
range from ii0,000 feet to 72,000 feet. On the other hand, for a missile
with K = +0.4, the oscillations begin to diverge at 130,000 feet and
continue to diverge thereafter.

The main point that becomesevident from figure 2 is that the con-
sequences of a deficiency of aerodynamic damping (K _ O) can be more
serious for mannedvehicles than they are for ballistic missiles. This
follows from the observation that for the samevalue of positive K the
amplitude of oscillation of the mannedvehicle begins to diverge at a
higher altitude, so that by the time the amplitude of the ballistic
missile also begins to diverge the mannedvehicle has already sustained
a divergent oscillation over an altitude span of some30,000 to 55,000
feet. The reason for this becomesclear from inspection of the case
K = 0, corresponding to zero aerodynamic damping. Referring to equa-
tion (37), we see that divergence begins in this case when q'(s) = O;
that is, at the altitude where dynamic pressure is a maximum. Hence_
any factor (smaller entrance angle being one) which tends to raise the
altitude at which q is maximumwill also tend to increase the serious-
ness of the dynamic stability problem for cases where K _ O.

Amplitude ratios.- The value of a plot such as figure 2 is that one

can determine immediately whether or not the possibility exists of a

dynamic stability problem for a vehicle with a given value of K. If a

problem is indicated, however, its severity is still in doubt, since the

amplitude ratio may be so small when divergence begins, or divergence may

occur at so low an altitude_ that the amplitude cannot grow to serious

magnitudes in the time remaining before the vehicle lands. To investigate

the severity of the problem, the actual amplitude history is required.

Amplitude ratios have been evaluated from equation (27) for values

of K of -2, O_ and +2, representative of vehicles with a large amount

of aerodynamic damping, zero aerodynamic damping, and a large deficiency

of aerodynamic damping, respectively. These are plotted as functions of

altitude for a habitable vehicle (7i = 0°) in figure 3(a) and for a bal-

listic missile (Yi = 22o) in figure 3(b). The drag-loading parameter is

again 30 ib/sq ft in both cases. In addition, the dimensionless velocity

V is shown.

The results show that with K = -2 the amplitude ratio diminishes

very rapidly for both vehicles. For zero aerodynamic damping (K = 0),

the motion is divergent below the altitude for maximum q, but the

amplitude does not grow excessively for either the manned or ballistic

vehicle before sonic velocity is reached. For K = +2_ however_ it is

clear that a deficiency of aerodynamic damping of this magnitude leads

to a divergent oscillation that may be of serious consequence. In this

case the fact that divergence begins at a higher altitude for the manned
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vehicle than it does for the ballistic missile makes the dynamic stability

problem for the former vehicle considerably more severe. Thus, the ampli-

tude ratio for the manned vehicle has already reached i at an altitude of

115,000 feet (fig. 3(a)) whereas the amplitude ratio of the ballistic

missile at this altitude is still only 0.13 (fig. 3(b)).

Effect of 7i and W/CDA.- Having determined that the possibility of

a serious dynamic stability problem exists only for positive values of K,

we shall confine the remainder of the discussion to this case, letting

K = +2.

Figure 4 shows the effect on amplitude ratio of varying the initial

flight-path angle Yi for one value of W/CDA , whereas figure 5 shows

the effect of varying W/CDA for one value of Yi- It will be seen that

increasing either Yi or W/CD A tends to diminish the severity of the

dynamic stability problem for manned vehicles, although the former effect
is small because of the small range of entry angles available for feasible

manned flight trajectories. Both of these effects are simply manifestations

of the single fact already pointed out, that factors tending to lower the

altitude at which q is maximum also tend to diminish the severity of the

dynamic stability problem.

One final point should be made regarding the effects of Yi and W/CDA

on the oscillatory behavior of ballistic missiles and manned vehicles.

To isolate the effect of entry angle in figure 4 the two vehicles were

given the same value of W/CDA , namely, 30 ib/sq ft. We recognize that

while this is a reasonable figure for the manned vehicle, the drag-loading

parameter of a ballistic missile will generally be considerably larger.

Hence, in general, the ballistic missile will benefit from larger values

of both Yi and W/CD A. Thus, in figure 5 even the curve for the manned

vehicle with the highest value of W/CDA , i00 ib/sq ft, would fall above

and to the right of a typical ballistic-missile curve. It is the combi-

nation of beneficial factors, larger Yi and larger W/CD A, that leads

one to the conclusion that for a ballistic missile, dynamic instability

is a potential source of difficulty only in its terminal phase of flight.

In contrast, it is seen that dynamic instability is a source of difficulty

for the manned vehicle over a significant portion of its trajectory. We

should note, however, that a compensating factor also exists for the

manned vehicle that may ease the problem of controlling oscillatory diver-

gence: The maximum value of dynamic pressure experienced by manned

vehicles will be very much less than that of ballistic missiles. Hence,

although control of the oscillatory divergence of the manned vehicle may

be more urgently required, the frequencies at which the controlling device

must operate, being proportional to _, will be very much smaller for the

manned vehicle than they are for the ballistic missile.
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Lifting Vehicles

To study the effect of lift, we have chosen a vehicle having a lift-

to-drag ratio of 0.5 and a drag-loading parameter of 30 ib/sq ft. The

range of initial flight-path angles is 0° to 4° , as for the nonlifting

vehicles. The degree to which even this small amount of lift is effective

in reducing decelerations may be illustrated by noting that the maximum

deceleration experienced by the lifting vehicle in the worst case

(Yi = 4o) is only 3.6 g as compared to 13.3 g for the nonlifting vehicle
4°"with 7i = Hence we are assured that at least from the standpoint of

tolerable decelerations the vehicle under consideration is habitable.

Effect of K.- A comparison of the convergence boundary curve for the

lifting vehicle with the curve for the nonlifting vehicle is shown in fig-

ure 6 for one entrance angle, Yi = 0°" The figure shows that for vehicles

deficient in aerodynamic damping (K _ 0) the use of lift increases the

severity of the dynamic stability problem in about the same proportion as

it was increased by the use of small initial flight-path angles for non-

lifting vehicles (fig. 2). Consideration of the K = 0 case reveals that

this is once again attributable to the fact that the altitude at which q
is a maximum has been raised still further.

Amplitude ratios.- Amplitude ratios for the lifting vehicle with

7i = O° and K = -2, 0, +2 are shown in figure 7. These are to be compared
with the results for the equivalent nonlifting vehicle given in fig-

ure 3(a). It is noted that for K = 0 (and presumably for a range of

small K) the amplitude history for the lifting vehicle is not signifi-

cantly worse than that for the nonlifting vehicle. For K as large as

+2, however, it will be noted that the divergence is considerably more

seve re.

Amplitude ratio and velocity histories for the lifting vehicle with

initial flight-path angles of 2° and 4° are shown in figures 8(a) and 8(b),

respectively. For initial angles other than 0°, the trajectory of the

lifting vehicle differs from that of the nonlifting vehicle in that the

lifting vehicle makes small skips as the lift force momentarily overcomes

gravity. The strange behavior of the amplitude ratio curves simply

reflects the behavior of the static flight trajectory. Thus as the

vehicle first gains and then loses altitude_ the concurrent changes in

dynamic pressure cause the motion first to diverge and then to converge.

Finally, when the velocity has slowed sufficiently, the oscillatory
= 0° (fig. 7)amplitude behavior is almost identical to that for 7i

CONCLUDING REMARKB

An analysis has been carried out of the oscillatory motions developed

by vehicles as they traverse arbitrarily prescribed trajectories through
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the atmosphere. Expressions were derived that describe the oscillatory
motions and, in particular, the envelope of oscillations, as continuous
functions of the properties of the trajectory. For the special case of
constant aerodynamic coefficients the envelope of oscillations has the
simple form

cu_K/2- qll4

where q and u are, respectively, the dynamic pressure and horizontal
componentof velocity, K is a measure of the aerodynamic dampingproper-
ties of the vehicle, and C is an arbitrary constant.

Results of the analysis were used to study the oscillatory behavior
of vehicles which have deceleration histories that remain within bounds
of humantolerance. It was determined that for vehicles deficient in
aerodynamic damping (K _ 0), the factor governing the seriousness of the
divergent oscillations which occur is the altitude at which dynamic pres-
sure is a maximum. The decelerations of mannedvehicles are maintained
within tolerable limits by the use of small initial flight-path angles or
by the use of lift. Since both tend to raise the altitude at which
dynamic pressure is maximum,it was concluded that the dynamic stability
problem of mannednonlifting vehicles deficient in aerodynamic damping
may be more severe than that of comparable ballistic missiles, and that
the use of lift further increases the severity of the problem. On the
other hand, it is recognized that a compensating factor exists in that
the maximumvalue of q experienced by mannedvehicles will be very much
smaller than that of ballistic missiles. This factor may serve to ease
the problem of controlling the oscillatory divergence of mannedvehicles,
since the frequencies at which a control must operate, being proportional
to _, will be very much lower for mannedvehicles than they are for
ballistic missiles.

AmesResearch Center
National Aeronautics and Space Administration

Moffett Field, Calif., Dec. 2,1958
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